A GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008.
نویسندگان
چکیده
The human MICA (MHC I-related chain A) gene, encoding a ligand for the NKG2D (NKG2-D type II integral membrane protein) receptor, is highly polymorphic. A group of MICA alleles, named MICA 5.1 (prototype, MICA*008), produce a truncated protein due to a nucleotide insertion in the transmembrane domain. These alleles are very frequent in all of the human populations studied and they have different biological properties, compared with full-length alleles, e.g. recruitment into exosomes, which makes them very potent for down-modulating the NKG2D receptor in effector immune cells. Moreover, MICA*008 is not affected by viral immune evasion mechanisms that target other MICA alleles. In the present study, we demonstrate that MICA*008 acquires a GPI (glycosylphosphatidylinositol) anchor and that this modification is responsible for many of the distinct biological features of the truncated MICA alleles, including recruitment of the protein to exosomes. MICA*008 processing is also unusual as it is observed in the endoplasmic reticulum as a Triton™ X-114 soluble protein, partially undergoing GPI modification while the rest is exocytosed, suggesting a new model for MICA*008 release. This is the first report of a GPI-anchored MICA allele. The finding that this modification occurs in both families of human NKG2D ligands, as well as in the murine system, suggests positive pressure to maintain this biochemical feature.
منابع مشابه
Allele Specific Expression of MICA Variants in Human Fibroblasts Suggests a Pathogenic Mechanism
The major histocompatibility complex class I chain-related gene A (MICA) is involved in immune responses of both nature killer (NK) cells and subsets of T cells with its receptor NKG2D. MICA is highly polymorphic in sequence which leads to MICA protein variants with distinct features. Specific polymorphisms of MICA have been associated with inflammatory diseases, including ankylosing spondyliti...
متن کاملNatural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes.
The MHC class I-related chain (MIC) A and MICB ligands for the activating receptor NKG2D can be shed from tumor cells, and the presence of these soluble molecules in sera is related with compromised immune response and progression of disease. Recently, thiol disulphide isomerases and members of the ADAM (a disintegrin and metalloproteinase) gene family were identified as key enzymes in mediatin...
متن کاملDown-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity.
Natural killer (NK) cells are important early mediators of host immunity to viral infections. The NK activatory receptors NKG2D and NKp80, both C-type lectin-like homodimeric receptors, stimulate NK cell cytotoxicity toward target cells. Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) down-regulates MHC class I molecules to avoid detection by cytotoxic T lymphocytes but...
متن کاملThe human NKG2D ligand ULBP2 can be expressed at the cell surface with or without a GPI anchor and both forms can activate NK cells.
The activating immune receptor NKG2D binds to several stress-induced ligands that are structurally different. MHC-class-I-related chain (MIC) A/B molecules have a transmembrane domain, whereas most UL16 binding proteins (ULBPs) are glycosylphosphatidylinositol (GPI)-linked molecules. The significance of this variability in membrane anchors is unclear. Here, we demonstrate that ULBP2, but not UL...
متن کاملMICA variant promotes allosensitization after kidney transplantation.
MHC class I-related chain A (MICA) antigens are surface glycoproteins strongly implicated in innate immunity, and the MICA gene is highly polymorphic. Clinical observations suggest a role for donor MICA antigens expressed on transplant endothelial cells in the alloimmune response, but the effect of MICA genotype is not well understood. Here, we investigated the immunologic effect of the A5.1 mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 454 2 شماره
صفحات -
تاریخ انتشار 2013